On $beta-$topological vector spaces

Authors

  • M. Ram Department of Mathematics, University of Jammu, JK-18006, India.
  • S. Sharma Department of Mathematics, University of Jammu, JK-18006, India
Abstract:

We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

s-Topological vector spaces

In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...

full text

Notes on Topological Vector Spaces

Preface In the notion of a topological vector space, there is a very nice interplay between the algebraic structure of a vector space and a topology on the space, basically so that the vector space operations are continuous mappings. There are also plenty of examples, involving spaces of functions on various domains, perhaps with additional properties, and so on. Here we shall try to give an in...

full text

Essays on topological vector spaces

where f is a continuous function of compact support onGwith values in V . This is not quite a trivial matter. If V is assumed to be complete, a definition by Riemann sums works quite well, but this is an unnecessarily strong requirement. The natural condition on V seems to be that it be quasi-complete, a somewhat technical but nonetheless valuable condition. Continuous representations of a loca...

full text

ON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES

The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...

full text

s-topological vector spaces

in this paper, we have de ned and studied a generalized form of topological vectorspaces called s-topological vector spaces. s-topological vector spaces are de ned by using semi-open sets and semi-continuity in the sense of levine. along with other results, it is provedthat every s-topological vector space is generalized homogeneous space. every open subspaceof an s-topological vector space is ...

full text

Topological vector spaces

Each space C N = {f ∈ C c (R) : sptf ⊂ [−N,N ]} ⊂ C[−N,N ] is strictly smaller than the space C[−N,N ] of all continuous functions on the interval [−N,N ], since functions in C N must vanish at the endpoints. Still, C o N is a closed subspace of the Banach space C [−N,N ] (with sup norm), since a sup-norm limit of functions vanishing at ±N must also vanish there. Thus, each individual C N is a ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 08  issue 01

pages  63- 70

publication date 2019-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023